
Pfizer-BioNTech and Moderna mRNA Vaccines Elicit Different Antibody Responses
The Pfizer-BioNTech and Moderna mRNA vaccines were found to produce different antibody and killer T-cell responses, suggesting a “mix and match” booster approach may provide the best protection against COVID-19.
There are currently 3
In December 2021, the US Centers for Disease Control and Prevention (CDC)
However, the 2 US-approved mRNA vaccines are not interchangeable. New
The study included 73 participants, 28 of whom received the Moderna vaccine and 45 who received Pfizer-BioNTech. Because real-world data suggests the 2 mRNA vaccines differ in their ability to prevent infection, the investigators analyzed whether they elicited similar Fc profiles.
Fc receptors (FcRs) bind to antibodies that have attached to infectious pathogens, stimulating the antibody to generate an adequate immune response to the antigen. Fc-mediated effector functions have been shown to enhance protection against COVID-19 after vaccination or infection.
Both mRNA vaccines induced strong humoral immune responses to SARS-CoV-2 variants of concern, with equivocal IgG and IgM binding titers. Differences emerged in the epitope-specific responses, with greater receptor-binding domain (RBD)- and N-terminal domain-specific IgA concentrations in Moderna vaccine recipients. Moderna recipients also had increased natural killer T-cell activation and antibodies eliciting neutrophil antibody depletion.
RBD-specific antibody depletion emphasized the prevalence of non-RBD-specific antibody effector function, deployed at different concentrations in the Pfizer-BioNTech and Moderna vaccines. The investigators believe this explains the different Fc-mediated effector concentrations observed between the 2 mRNA vaccines.
Univariate comparisons across each antigen and Fc-profile measurements revealed FcR-binding antibodies for all 3 VOCs were comparable between Pfizer-BioNTech and Moderna. However, there were elevated IgA concentrations in Moderna recipients, and elevated IgM and IgG levels in Pfizer-BioNTech recipients.
As the Delta and Omicron variants caused unprecedented numbers of breakthrough infections, causing vaccine protection against infection to plumet, new vaccination strategies need to be examined. The different epitope recognition and antibody mediated functional properties observed in the Pfizer-BioNTech and Moderna vaccines suggest mixing and matching initial vaccine series and booster shots may provide the highest level of protection.
Previous
Newsletter
Stay ahead of emerging infectious disease threats with expert insights and breaking research. Subscribe now to get updates delivered straight to your inbox.